
J. Fluid Mech. (2003), vol. 487, pp. 147–166. c© 2003 Cambridge University Press

DOI: 10.1017/S0022112003004774 Printed in the United Kingdom
147

Gravity-driven flows of viscous liquids over
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Using phase-stepped interferometry, we have measured full two-dimensional maps
of the free-surface shape of a thin liquid film of water flowing over an inclined
plate with topography. The measurement technique allows us to image automatically
the shape of the free surface in a single field of view of about 2.4 by 1.8 mm,
with a lateral resolution of 3.1 µm and a height resolution of 0.3 µm. By imaging
neighbouring regions and combining them, complete two-dimensional free-surface
profiles of gravity-driven liquid films with a thickness ranging between 80 and 120 µm
are measured, over step, trench, rectangular and square topographies with depths of 10
and 20 µm, and lateral dimensions of the order of 1 to several mm. The experimental
results for both one- and two-dimensional flows are found to be in good agreement
with existing models, including a recent two-dimensional Green’s function of the
linearized problem by Hayes et al. This extends the applicability of simple models to
cases with a high value of topography steepness and low-viscosity liquids as in our
experiments. A corollary of the agreement with the linear two-dimensional model is
that our experimental results behave linearly, a convenient property that allows the
free-surface response to complex topographies to be worked out from knowledge of
the response to an elementary topography like a square.

1. Introduction
The importance of the shape taken by a thin liquid film flowing over a topography

has grown with the increasing number of thin film devices that are manufactured.
Industries as diverse as microelectronics, displays, optical storage or microfluidic
devices all require an understanding of thin liquid film deposition. In most of these
products, many layers are successively deposited, photolithographically patterned and
developed. As the coating fluid flows, for example by spin, dip or slide coating, its
features will be influenced by the previous layer profiles.

Generically, the steady-state problem depicted in figure 1 is to be studied, where a
thin film of fluid flows over a topography T (x, y) of typical height T and streamwise
length w. The position of the interface with respect to the reference plane z =0
is given by h(x, y). The asymptotic film thickness of the film far away from the
topography is h∞. Gravity is also represented in figure 1, exerting its action at an
angle α with the vertical. The extent to which the newly formed film will adopt a
profile that conforms to the underlying topography, or on the contrary will planarize,
is of prime importance and therefore the problem of thin film flow over a topography
has received considerable interest both theoretically and experimentally.

The pioneering theoretical work of Stillwagon, Larson & Taylor (1987) initially
studied dried profiles obtained experimentally using a profilometer and was then
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Figure 1. Side view of the flow of a thin liquid film of asymptotic thickness h∞ over a
topography T (x, y). The y-axis is oriented perpendicular to the plane of the paper and is
therefore not represented. In the case of a one-dimensional problem, each topography step is
preceded by a standing capillary wave, and followed by an exponential recovery.

expanded to numerically solve the one-dimensional lubrication equation over shallow
trenches in Stillwagon & Larson (1988). They were the first to derive the analytical
solution to the one-dimensional lubrication equation for the profile of a film flowing
over a step topography (Stillwagon & Larson 1990). They obtained a standing
capillary ridge in front of the topography change and a downstream exponential
decay. This behaviour is dictated by the interplay of surface tension and body forces,
and is characterized by a decay lengthscale hereafter termed the ‘dynamic capillary
length’. Later, Roy & Schwartz (1997) extended the one-dimensional lubrication
approach of the problem to the case of steep topographies by expressing the problem
in a curvilinear coordinate system attached to the substrate (see also Valéry Roy,
Roberts & Simpson 2002). Decré, Fernandez-Parent & Lammers (1999) proposed a
Green’s function formalism to the problem studied by Stillwagon & Larson (1990),
and added a second-order term that causes the capillary ridge to stand more upstream
of the topography in the case of deeper topographies. Recently, Kalliadasis, Bielarz
& Homsy (2000) reconsidered the problem of topography depths comparable with
or larger than the unperturbed film thickness. They solved the corresponding one-
dimensional lubrication equation numerically using a dynamical systems approach,
showing that deep topographies behave asymmetrically, a step-down causing a
comparatively much larger capillary ridge than a step-up. They also showed that
gravity could cause the capillary ridge to disappear. Mazouchi & Homsy (2001)
completed this work by studying the corresponding Stokes problem, and showed
that increasing the importance of viscosity with respect to the surface tension (as
expressed by the capillary number Ca, see § 3), leads to a widening and flattening of
the ridge. Gramlich et al. (2002) have also shown that temperature steps superimposed
on a one-dimensional topography could, through thermal Marangoni effects, suppress
the capillary ridge. The body of literature just discussed provides an extensive,
experimentally well-validated analysis of the one-dimensional case. It is a remarkable
feature of the lubrication theory as applied to this problem that although its formal
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validity is, strictly speaking, limited to the cases of shallow smooth topographies for
thin films, or narrow topographies when the film is thicker, it has proven very robust
and predictive when compared to experimental results. In a stability analysis of this
problem, Kalliadasis & Homsy (2001) have confirmed this behaviour by showing
the strong stability of flows over topography with respect to all disturbances (either
localized around a topography or disturbances on the film regions away from it, i.e.
step changes in flow rate etc.).

The case of two-dimensional topography, has received much less attention so
far. Pozrikidis & Thoroddsen (1991) numerically solved the two-dimensional Stokes
equation linearized for a small particle topography using boundary integral methods.
They obtained results qualitatively identical to the one-dimensional case, with an
important capillary ridge standing in front of the obstacle, and two symmetrical,
exponentially decaying capillary wakes on the sides. Hayes, O’Brien & Lammers
(2000) derived the analytical expression for the Green’s function of the linearized two-
dimensional lubrication equation over a shallow topography, and obtained free-surface
shapes qualitatively comparable to those of Pozrikidis & Thoroddsen (1991). Peurrung
& Graves (1991, 1993) studied the decay of the film thickness over a topography
in spin coating using an interferometer, and obtained pictures of two-dimensional
fringe patterns. They displayed their experimental results next to numerical solutions
of the two-dimensional lubrication equation and obtained qualitative agreement.
However, Peurrung & Graves (1993) did not extract experimental profiles from their
two-dimensional fringe patterns, so no quantitative validation has been available so
far.

It is the aim of the present work to provide quantitative full two-dimensional free-
surface profiles for the validation of two-dimensional models of thin film flow over a
topography. In earlier work, the one-dimensional profiles of thin liquid films flowing
over one-dimensional topographies were studied using single-arm interferometry (see
Messé & Decré 1997; Lucéa, Decré & Lammers 1999; Decré, Fernandez-Parent
& Lammers 1998, 1999). This method relies on measurement of the interference
patterns that arise between the wavefront reflected at the surface of the fluid and that
reflected at the surface of the substrate. Each dark interference fringe corresponds
to destructive interference, and the optical path difference between two neighbouring
fringes is then �s = λ/(2nf cos θt ), with λ the wavelength of the analysing beam in
air, nf the refractive index of the fluid, and θt the angle of the transmitted light.
One therefore obtains information related to the optical path within the fluid film,
a quantity proportional to both nf – the refractive index of the fluid – and h – the
local film thickness. A drawback of single-arm interferometry is that it measures
the intensity distribution of the wavefront only, i.e. it provides for the position of
the interference fringes but not for their phase, as discussed in Hansen (2001). As a
consequence, one cannot derive solely from such measurements whether the following
fringe corresponds to plus or minus �s: prior knowledge of the measured profile is
needed. The case of a thin liquid film flowing over a one-dimensional topography
provides such prior knowledge: first because one-dimensional wavy surfaces cannot
contain saddle points, as a surface extremum in a one-dimensional free surface
always leads to an inversion of the slope; secondly when studying surfaces on
topography, one always knows that the asymptotic levels of the surface up- and
downstream of the topography are equal to h∞. This knowledge has been used to
derive profiles from single-arm intensity interferometry, either manually, Peurrung
& Graves (1991) or automatically, Messé & Decré (1997), Decré et al. (1999). This
technique is however not suited for the analysis of two-dimensional surfaces; in
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Figure 2. Schematic view of interferometric set-up.

general phase indetermination will lead to complex problems around saddle points
and in particular the implementation of ‘prior-knowledge’ algorithms into automatic
two-dimensional extensions of existing one-dimensional analysis would be restricted
to a limited number of cases. This lead us to opt for phase-stepped interferometry, a
technique that is routinely used in optical workshops, to determine the phase portrait
of optical elements (Gasvik 1996; Malacara, Servin & Malacara 1998), and for which
existing software offers automatic computation of the two-dimensional profile.

In the following, we first address the experimental details of phase-stepped
interferometry as we applied it to the inclined plate set-up, then we present the results
of one-dimensional free-surface profiles before extending to the discussion of two-
dimensional profiles. We systematically compare our results to previous theoretical
models, and draw a number of conclusions.

2. Experimental
2.1. Optics

Phase-stepped interferometry is used to measure the phase of a wavefront by collecting
intensity interferograms for at least three different stepped positions of the reference
mirror in a Twyman-Green (or double-arm) interferometer (Gasvik 1996; Malacara
et al. 1998). The steps must be a fraction of the wavelength of the analysing laser.
Here we only sketch the basic principles of the measurement (figure 2). The interested
reader is referred to the specialized literature for more details (see references earlier in
this paragraph). The time-averaged spatial intensity distribution of an interferogram
I (x, y) can be described as a function of the phase of the wavefront Φ(x, y) using
the following equation from Gasvik (1996):

I (x, y) = I0(x, y)[1 + V (x, y) cos{Φ(x, y) − Φr (x, y)}], (2.1)

where I0(x, y) is the mean intensity, V (x, y) the visibility (representing the local
attenuation of the signal), and Φr the reference phase determined by the position of
the reference mirror. The phase shifted measurements result in a set of intensity maps
for different reference phases, the problem being to calculate Φ(x, y). There are three
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unknown quantities in (2.1): I0(x, y), V (x, y) and Φ(x, y). In theory, three different
measurements of I (x, y) for three known values of Φr are sufficient to determine the
three unknown quantities, but the calculation is not stable, as is shown in Gasvik
(1996). Using four positions zi of the reference mirror Φr,i = 2πzi/λ = 0, π/2, π, 3π/2
yields a stable scheme and thus the four-step phase Φ4(x, y) is given by

Φ4(x, y) = arctan

(
I2 − I4

I1 − I3

)
. (2.2)

The calculation is performed on each point (x, y) for the complete interferogram. In
practice a five-frame algorithm is used, in which a measurement with Φr,5 = 2π is
added. The five-step phase Φ5(x, y) is now given by

Φ5(x, y) = arctan

(
2(I2 − I4)

I1 − 2I3 + I5

)
. (2.3)

The advantage of this five-frame method is that it is immune to second-order
nonlinearities of the detector, and phase-shift miscalibration. There is thus a better
error compensation. In the following, all measurements were performed using a
five-frame scheme.

The details of our set-up are displayed in figure 2. We use a tailored version of
a Fisba Optik (St.Gallen, CH) phase-stepped interferometer system, driven with a
Philips version of the OMSoft software (Fisba Optik). The beam of our 675 nm diode
laser (DLS15, Spindler & Hoyer) is spatially filtered through a 15 µm pinhole, and
collimated to a diameter of a few millimetres with an f = 80 mm lens. The f =400 mm
imaging lens adjusts the magnification 2<M < 4 onto the 768 × 576 pixels mono-
chrome CCD camera (LDH 0703/30, Philips). This magnification is needed in order
to resolve the regions of steep profile, where interference fringes have to be resolved
with about 20 pixels per fringe. All our lenses have a diameter of 25 mm. Note that
we study the shape of the air–water interface of a thin liquid film flowing over
a glass plate. Three interfaces generate reflected wavefronts that are the cause of
interference: air–water (front), water–glass and glass–air (back). The reference mirror
is a 4◦ glass wedge, serving two goals: first it improves the modulation of the fringes
of interest by reducing the impact of the reflections at the water–glass interface;
second ghost reflections are removed by the wedged back face. In order to suppress
parasitic reflections at the back glass–air interface, an anti-reflection coating tuned
at a wavelength of 650 nm has been applied on the glass plate. The reflectivity was
lower than 0.2% in a range between 620 and 675 nm, including both HeNe lasers and
diode lasers.

It should be noted that the lens numerical aperture puts some limitations on the
maximum measurable slope variation of the profile. Any variation in the slope of
the measured surface will cause a divergence of the beam. An order of magnitude
of the slope of the profile can be estimated in our case by dividing a typical
height variation δh ≈ 25 µm by a typical lateral lengthscale for the capillary waves
Ld ≈ 0.8mm (Ld will be formally defined in § 3). In our case, when the slope (O(δh/Ld))
exceeds 25 µm/0.8 mm, the reflected beam will not be intercepted by the lens and
therefore no interference will occur for that region of the profile. Taking as a first-order
approximation that the maximum slopes of the profile scales with the topography
height T , this puts a limit on the maximum h∞/T ratio that we can study. We have
partly compensated for this problem by adjusting the tilt of the reference mirror,
so that topography depths of 20 µm were easily measured. To accommodate deeper
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topographies, the numerical aperture of the imaging lens (NA= D/f = 1/16 in the
present case) should be increased.

Using the five-frame scheme, it takes 0.5 s to register all interferograms, after which
the height of the free surface is computed with an accuracy of 0.1 µm. The lateral
resolution – as determined by the CCD sensor and the magnification – is 3.1 µm,
safely above the diffraction limit. Since phase-stepped interferometry is an imaging
technique, each measurement provides a 768 × 576 grid with a pitch of 3.1 µm. This
exceeds our needs, the typical lateral scale of the flow being Ld ≈ 1 mm. We therefore
perform a running average on one point out of ten in both x- and y-directions,
so that the actual lateral sampling of all profiles displayed hereafter is 31 µm. This
reduces the size of the data files by a factor 100 without impairing the effective
accuracy. It should be noted that for a measurement to succeed, the absolute position
of the free surface with respect to the reference mirror must not vary by more than
0.2λ, that is 135 nm, during the whole acquisition of the five interferograms, say 0.5 s.
This stringent requirement in terms of flow stability is met using a box to exclude
room turbulence, and having the whole set-up installed on a pneumatic anti-vibration
system (XL-A, Newport).

Because of the limited field of view of the camera (approx. 2.4 × 1.8 mm), and
the intrinsic large extent of the flow features that follow from the dynamic capillary
length Ld ≈ 1mm, we need to take several pictures by moving the set-up in steps
under the interferometer in order to capture the whole profile. The stepping of the
set-up is realized with a LabViewTM (National Instruments) program that controls a
motorized x-y stage with 2 µm accuracy (Schaad AG, CH). Given that some overlap
is needed between neighbouring pictures to support ‘stitching together’, up to 15 × 15
phase-stepped measurements have to be performed to cover the largest topographies.
Such a series can take one hour to acquire, during which the flow conditions have
to be kept constant. Small variations in the two-dimensional profile, observed as
discontinuities across streamwise stitching bands (see figure 5), can be attributed to
small flow rate fluctuations or unsteady variations over the few minutes it takes to
scan one band. They are taken account of in our total error budget of 0.3 µm.

One significant difference between our previous work on one-dimensional profiles,
using single-arm intensity interferograms, is that double-arm phase-stepped inter-
ferometry measures the shape of the interface, not the thickness. The overall shape
of the underlying susbtrate will thus also be measured as a slow variation of the
interface shape. Since the 1-mm-thick glass plates are clamped upstream, and rest on
a steel ball downstream, all at 30◦ relative to gravity (figure 3), some flexion of the
plate can be expected. We have measured this to be satisfactorily approximated with
a parabola in the streamwise direction, with a maximum amplitude of 30 µm. The
residual error after correction is included in the total 0.3 µm already mentioned. The
transverse substrate deformation is found to be negligible.

2.2. Inclined plate set-up

We study the flow of a 40-mm-wide demineralized water stream down a 100 mm ×
100 mm × 1 mm glass plate (Dow Corning 7059). The topographies are produced
photolithographically by wet-etching the glass and their depths are measured with an
optical profilometer (Microfocus, UBM) within 0.1 µm. The glass surface is cleaned for
15 min in an ultrasonic bath in demineralized water with 5% vol. Extran soap (Merck)
then rinsed successively in demineralized water/ethanol/heptane, as recommended
in Pulker (1984). An additional UV-ozone cleaning step of 15 min completes the
procedure (PR-100, UVP Inc. USA). The static contact angle of demineralized
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Figure 3. Side view of the flow set-up. The entire construction is inclined at an angle α with
the horizontal. (a) Glass slide with topography; (b) exit of feeding slit; (c) slit chamber; (d)
inlet from reservoir (not displayed); (e) spring-actuated clamping bar (see footnote on p. xxx).

water on such a cleaned glass surface is smaller than 2◦ (as measured by wedge
interferometry, Allain, Ausserré & Rondelez 1985). In order to generate a thin liquid
film, we have designed a slit apparatus on an inclined plate (see figure 3). A reservoir
feeds the slit chamber by means of a flexible hose. The relative height H of the
reservoir with respect to the outlet of the slit determines the pressure head that drives
the flow to the underlying plate. A chamber upstream of the slit is purged of all air
when starting the flow to obtain stable and reproducible operation. The Poiseuille
flow rate through a slit of width b and height d is given by

φslit = − 1

12µ

dP

dx
bd3, (2.4)

with µ the dynamic viscosity of the fluid and dP/dx = −ρgH/D the driving pressure
gradient, ρ being the mass density of the fluid, g the acceleration due to gravity and
D the streamwise length of the slit. As the fluid has established a steady thin film flow
on the inclined plate, the asymptotic film thickness h∞ is governed by the following
lubrication equation for the flow rate:

φplate =
1

3µ
Bρg sin αh3

∞, (2.5)

where B is the actual width of the liquid film on the plate (40 mm) and α is the angle
of the plate relative to the horizontal. Considering (2.4) and (2.5), one sees that the
asymptotic thickness h∞ on the plate that is fed through the slit depends on H 1/3,
and is independent of the viscosity of the fluid. In our experiments the height is
typically varied between 0.4 m and 1 m. We took care that the height of liquid in the
reservoir does not vary more than 2% during an experiment, so that h∞ is constant
within 1%. As we will see later, since the characteristic streamwise scaling length Ld is
further proportional to h1/3

∞ , our hypothesis of constant operating conditions is valid to
better than 0.5%. The slit has D × b × d dimensions of 10 mm × 40 mm × (25 ± 1 µm),
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and was cut in an aluminium block. This accuracy allowed us to create a flow with
spanwise thickness homogeneity better than 5%†.

Since our interferometric measurements do not provide an absolute value of the
position of the interface, we must determine the average flow rate φplate or equivalently
the asymptotic thickness h∞ by other means. We have relied upon both local laser pen
profilometry of the free surface (UBM profilometer) and measurements of the liquid
height variation in the reservoir to monitor average film height. In a comparison of
both techniques, it has been demonstrated (Lucéa et al. 1999), that given an accuracy
of 0.02 mm in the liquid height H in the reservoir and 0.5 s in time registration, the
flow rate was determined within 3%, and provided the width of the film on the plate
B was known, the resulting derivation of h∞ using (2.5) was reliable. Therefore all
values of h∞ reported here have been obtained by measuring the flow rate in the
reservoir.

3. Results and discussion
We have studied the flow of water films over a number of topographies – step-up,

step-down and trench – across the whole width of the glass plate (one-dimensional)
as well as four different rectangular and one square topographies (two-dimensional).
The streamwise width of the topographies was w = 1.2mm, with spanwise lengths
L =1.2, 6, 10, 18 (two-dimensional) and 100 mm (one-dimensional). The topography
depth T was 10 and 20 µm within 0.1 µm. For the demineralized water, we use
the following fluid parameters: ρ = 1000 kg m−3, µ = 1 mPa s and the surface tension
γ = 0.070N m−1. The asymptotic film thickness h∞ varied between 80 and 120 µm,
and the plate was inclined at α =30◦ with the horizontal. In the following, we will
always discuss dimensionless perturbation profiles h1(x, y)/T =(h(x, y) − h∞)/T , to
remove the offset caused by the asymptotic thickness h∞. The experimental accuracy
ε(h1/T ) = ε(h1) + ε(T ) is typically 0.3 µm/20 µm+0.1 µm/20 µm ≈ 2%.

As discussed in Kalliadasis et al. (2000) and Hayes et al. (2000), the dynamic
capillary length is the natural in-plane dynamic lengthscale that arises from the
lubrication analysis of the problem. The dynamic capillary length Ld can be
understood as the film thickness scaled with the capillary number Ca according
to Ld = h∞/Ca1/3, with Ca = µU/γ , U being a characteristic velocity in the film.
Following Hayes et al. (2000) and Decré et al. (1999) our definition of the dynamic
capillary length Ld is

Ld =

(
γ h∞

3ρg sin α

)1/3

. (3.1)

Applying the experimental values mentioned above gives 0.73 mm < Ld < 0.83 mm. In
the following, all in-plane dimensions will be scaled using Ld , while vertical dimensions
will be scaled with T , the topography height. Five dimensional length parameters are
present in the problem: film thickness away from the topography, depth, width and
length of the topography, and dynamic capillary length. The latter integrates the
dynamic quantities as is readily seen from (3.1). Strictly speaking, from these five

† From (2.4) and (2.5), it is seen that h∞ ∼ d . The accuracy of the slit height, its reproducibility
and its uniformity over the whole width are therefore crucial to the quality of the thin film. We have
used a spring-actuated steel bar to uniformly clamp the glass plates with reproducible force against
the slit. In practice, the observed flow rates indicate that the actual slit height d is 25 ± 1 µm. Any
additional fluctuations are due to small particles on the contact surfaces.
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dimensional parameters, not more than four dimensionless groups are needed to
characterize the problem. A possible set of parameters is the topography width w/Ld ,
the topography length L/Ld , the dimensionless topography height T/h∞ and the
topography aspect ratio w/T . Taking a closer look at the way Hayes et al. (2000)
obtained their equation (21), however, shows that this equation apparently contains
only two remaining dimensionless parameters: the dimensionless x- and y-extents
of the function T (x, y), that correspond to our w/Ld and L/Ld . T/h∞ is the small
parameter of the lubrication problem, and since Hayes et al. (2000)’s equation (21)
solves for the first-order perturbation of the thickness h(x, y), the small parameter
T/h∞ has been scaled out of the problem (note however that knowledge of T/h∞
is needed to rebuild the full profile h(x, y) from h1(x, y) and h∞). This leaves three
independent parameters to be considered, namely w/Ld , L/Ld , and w/T . Since T

takes only two values and w a single one (see above), we will not provide w/T

hereafter. T/h∞, being the ‘small parameter’, will be given where applicable, for
completeness.

We have chosen to work at w/Ld values O(1), to test potential nonlinear
effects. Indeed, as discussed by Stillwagon & Larson (1990) and further developed
in Kalliadasis et al. (2000), when w/Ld is small, the free surface tends to respond to
the topography as a localized, singular perturbation, whereas large w/Ld values lead
to well-separated non-interacting steps up or down.

3.1. One dimension

Prior to studying two-dimensional features, we reproduced earlier one-dimensional
results, putting some emphasis on the case of a trench and a slender rectangle.
Figures 4(a) and 4(b) compare the flow over a single step-up and step-down with the
linear one-dimensional theory given in Stillwagon & Larson (1990) (equation (12)
therein). The film thickness was h∞ = 100 µm (T/h∞ = 0.2). It can be seen that for
the parameter values concerned, the linear one-dimensional theory is excellent, as
the r.m.s. difference with the experiments is smaller than the measurement accuracy.
Figure 4(c) shows the trench response for T/h∞ = 0.19 (h∞ = 105 µm). Liquid film
profiles measured at other film thicknesses of 95 and 113 µm show no quantitative
differences. These results confirm, as expected, that such small variations of the
thickness – and therefore of the dynamic capillary length – do not influence the
response of the flow to the topography. Also here, the linear analytical model shows
very good agreement. This confirms our earlier observations from Decré et al. (1999)
that a weakly nonlinear model is only necessary for T/h∞ values of the order of 0.5
and larger, and also confirms the more recent analysis by Kalliadasis et al. (2000).

3.2. Two dimensions

Figures 5 and 6 present the two-dimensional profiles over topographies with decreasing
L/w values of 15, 8.33, 5 and 1 in false colour and perspective, respectively.
Classically, Kalliadasis et al. (2000) have shown that the response of the free surface
for large L/w consists of a ridge upstream of the start of the topography, a fast
film height decrease down to a minimum within the trench, and an exponential
recovery downstream. The measurements bear great similarity with those of Peurrung
& Graves (1991, 1993), bearing in mind that instead of fringe contours, each point in
the present work is a measurement. In figure 5, the development of two-dimensional
features is clearly seen. For an aspect ratio of 15, the centre of the liquid surface
responds as if it were one-dimensional. Some two-dimensional effects have already
developed downstream at L/w = 8.33, in the form of a curved response in the middle.
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Figure 4. Comparison of theoretical (full) and experimental (dashed) liquid film profiles over
one-dimensional topography: (a) step-up, T/h∞ =0.22; (b) step-down, T/h∞ = 0.23; (c) trench,
T/h∞ = 0.19, w/Ld = 1.52). For reference, the position of the topography is given as a dotted
line (refer to figure 1 for relative positions). The r.m.s. difference between experiments and
theory is 1.2%.

Over the square, the response is completely two-dimensional and developed. It is only
from L/w � 5 that the upstream ridge starts to curve.

Figure 6 provides additional qualitative information. The spanwise profile at its
deepest point evolves from a more or less flat profile in the centre with edge effects at
L/w = 15, to a merging of edge effects by L/w = 8.33. Narrower topographies cause
the deepest profile to narrow even further. Also note the evolution of the streamwise
profile on top of the downstream edge of the topography. For L/w = 15 it displays
three undulations, one in the centre and one on each side, then two undulations on
the sides for L/w = 8.33, and finally one large central bump for L/w = 1.

We now discuss the results on a square in more detail. Figure 7 compares the
measured profile h1 over a square (w/Ld = 1.54 and T/h∞ = 0.25) and the theoretical
response to a Dirac topography, h1,δ following Hayes et al. (2000). The theoretical
profile has been scaled with the volume of the topography w2 × T , equivalent to
assuming that the topography can be expressed as T (x, y) = w2T δ(x, y), with δ(x, y)
the two-dimensional Dirac function. Both pictures are displayed at the same scale.
The theoretical profile has been obtained by numerical integration of equation (86)
in Hayes et al. (2000), using the computer algebra software Mathematica (Wolfram
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Figure 7. False colour representation of the free surface over a square.
Comparison between theory and experiment. All scales, lateral and
vertical, are the same. Background red: h1/T ≈ 0; dark red: h1/T > 0;
dark green: h1/T < 0. w/Ld = 1.54, T/h∞ = 0.25. Flow is from top to
bottom.

Figure 5. False colour mapping of the free surface for decreasing aspect
ratios L/w of the feature. T/h∞: (a–c) 0.15, (d) 0.25; L/w: (a) 15; (b)
8.33; (c) 5; (d) 1. The topography is delineated on scale as a green line.
w/Ld ≈ 1.52. Flow is from left to right.
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Figure 6. Shape of the free surface for decreasing aspect ratios L/w. x is streamwise
direction and y spanwise direction. For dimensionless parameters see figure 5.

Inc.). The value of h1,δ was calculated over the (x, y) domain [(−50, 50), (0, 50)],
using the (x, z)-plane symmetry, and care has been taken to verify that the integral
of h1,δ was equal to 1, to avoid errors in scaling. We have checked that the one-
dimensional profiles computed over a one-dimensional topography using the two-
dimensional h1,δ are in agreement with the standard, analytical one-dimensional linear
theory.

The qualitative agreement in figure 7 is striking, as it is also with figures 3 and
9 from Pozrikidis & Thoroddsen (1991). Note that the experimental profile is more
spread out than the theoretical Dirac response, which can be attributed to the finite
dimensions of the actual topography.

Figures 8 and 9 show respectively streamwise and spanwise experimental profiles
taken from figure 7, at intervals of half a topography width w/(2Ld).

The theoretical profiles in figures 8 and 9 are computed numerically using con-
volution on h1,δ , according to Hayes et al. (2000):

h1(x, y) =

∫ ∞

−∞

∫ ∞

−∞
T (x0, y0)h1,δ(x − x0, y − y0) dx0 dy0,

T (x, y) = −1 for − w/(2Ld) � x � w/(2Ld), −w/(2Ld) � y � w/(2Ld),

T (x, y) = 0 for x, y < −w/(2Ld), x, y > w/(2Ld).




(3.2)
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Figure 8. Comparison of experimental (dashed) streamwise (x) free-surface profiles with theory
(full), for several y positions in the case of a square topography, w/Ld = 1.54, T/h∞ = 0.25.

Both the positions of the extrema and their amplitudes are in very good agreement.
Note that the noise observed, particularly in figure 9, though significant, represents
less than 0.01T (that is 0.2 µm).

Linearity is a very useful property that allows profiles of complex topographies to
be built from the linear addition of the response to a single building block. It is thus
interesting to verify to what extent our experimental results indeed behave linearly,
beyond their comparison with the linear theory. The response on a rectangular
topography for L = 5w can be obtained by the linear summation of the response on
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Figure 9. Comparison of experimental (dashed) spanwise (y) free-surface profiles with theory
(full), for several x positions in the case of a square topography, w/Ld = 1.54, T/h∞ = 0.25.

a square topography (figure 10):

hL=5w
1 =

2∑
i=−2

h
sq

1 (x, y + i × w/Ld), (3.3)

where i corresponds to the numerals in figure 10. Note that (3.3) is easily generalized
to any arbitrary combination of squares. As a consequence, from measurements of
the profiles h

sq

1 (x, y) on a single square as discussed previously, one can calculate the
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Figure 10. Concept of the linearity test. Five squares of size w identified by roman numerals
make up a rectangle of width L = 5w. Centre cross-section AA′ and side cross-section BB′

(see text for explanation).
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Figure 11. Experimental test of the linearity: comparison of the linear summation of
experimental square profiles (full) with the equivalent L =5w rectangle (dot-dashed) streamwise
profiles. (a) y = 0, (b) y = 2.5w/2Ld .

sum in (3.3) and compare it with the experimental results for a rectangle L = 5w. We
have done this for the centre-profile hL=5w

1 (x, 0) (cross-section AA′, figure 10), and
for the side-profile hL=5w

1 (x, 2.5w/Ld) (cross-section BB′, figure 10) with very good
agreement as shown in figure 11.

It follows from the preceding results that the experimental system behaves linearly
for the range of parameters discussed here, and that linear superposition of profiles
obtained from elementary topographies can be used to construct more complex
structures.

In the light of this, the actual experimental conditions can be compared with the
validity limits of the linearized lubrication approximation used in Hayes et al. (2000).
Let us first introduce some dimensionless groups: the modified Reynolds number
Re T/δ, with Re = ρUh∞/µ, δ being a typical distance that characterizes the steepness
of the topography (see e.g. δ
 in Kalliadasis et al. 2000); the gravity parameter



162 M. M. J. Decré and J.-C. Baret

h∞ [µm] 80 120
U [m s−1] 0.03 0.07

Ca 0.4 × 10−3 1.1 × 10−3

Bo 0.8 × 10−3 1.7 × 10−3

G 0.15 0.17

T [µm] 10 20 10 20
ReT/δ 12 24 18 36
Ca2/3h∞T/δ2 1.16 2.31 3.2 6.4

Table 1. Relevant dimensionless numbers for the present experiments

G = Bo Ca−2/3 ≈ 1, with the Bond number Bo = ρgh2
∞/σ . A number of conditions

can be found in the literature for the validity of the lubrication equation in our case:
(a) when Ca ≈ 1, Stokes’ equation should be used (see Mazouchi & Homsy 2001);
(b) inertia terms are needed when Re T/δ ≈ 1;
(c) when G = Bo Ca−2/3 ≈ 1 the gravitation component normal to the substrate

should be included (see Kalliadasis et al. 2000);
(d) when Ca2/3h∞T/δ2 ≈ 1 Roy & Schwartz (1997) describe the flow in a curvilinear

system attached to the substrate.
Table 1 displays the values of the various cited dimensionless groups for our ex-

perimental conditions. It appears that while Ca and G are small enough not to require
Stokes’ equation or normal gravitation corrections, both the corrected Reynolds
number and the topography slopes are significantly high. These conditions apply to
with the low viscosity liquid we study†. Strictly speaking, one should consequently
use both an orthogonal curvilinear coordinate system and inertia terms to describe
the experimental results observed here. In particular, the topography and its first
three derivatives should all vary over lengthscales that are long compared to the local
film thickness, which is in contradiction with our very steep topographies, δ/T ≈ 1/5.
However, the very good agreement of experiments with the two-dimensional linear
lubrication model by Hayes et al. (2000) that we present here provides a strong
indication that if topography slope and inertia have an effect, it will be small.

To conclude, we shall discuss some specific features observed here in the case of
a two-dimensional topography. A striking difference between one-dimensional and
two-dimensional topographies is that the former have a limited effect downstream of
the last step feature, while the latter display long perturbations in the wake of the
topography.

When dealing with coating liquids that contain a solute, minute thickness variations
can trigger concentration gradients during the final coating formation, e.g. because of
solutal Marangoni flows, as discussed in Eres, Weidner & Schwartz (1999). One can
therefore expect the wake of a localized perturbation in a thin film flow to develop
long perturbed tails on both sides. Such a feature is commonly known in coating
technology practice as a comet-tail (see e.g. figure 4 in Hayes et al. 2000). Obtaining
a quantitative model for the description of such comet-tails may be achieved in the

† Note that since the mean flow velocity U is inversely proportional to the viscosity µ, the
capillary number Ca= µU/σ is independent of the viscosity. Therefore, one could study higher
viscosity liquids without increasing Ca, while reaching conditions closer to ideal lubrication. As we
have noted in the introduction however, practical considerations lead to our interest in systems with
lower viscosities.
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Figure 12. (a) Evolution of the spanwise (y) theoretical profile in the wake of a square of
width w = 1.5Ld . (b) Re-scaled spanwise profiles for x > 2Ld : the collapse on a single curve
shows that the profiles are self-similar. . . . . , x = 0; - - -, x = 2Ld ; – – –, x = 4Ld ; —, x = 6Ld ;
– · –, x = 8Ld ; - · - · -, x = 10Ld .

future by extending the two-dimensional Green’s function model with evaporation
terms or resorting to numerical analysis as in Eres et al. (1999).

In the case of one-dimensional topographies, the local curvature of the substrate
causes a standing capillary ridge upstream of the step-down topography (see
e.g. discussion in Kalliadasis et al. 2000), followed by an exponential relaxation
downstream of the topography, with Ld as the characteristic lengthscale: after a
distance of 3Ld the perturbation has decayed to less than 5% of its maximum
(figure 4). The situation is different in the two-dimensional case: here also, a capillary
ridge arises upstream of the step-down topography, see the bow-shaped dark region
in figure 7. However this time, the localized pressure peak leads to a negative pressure
gradient outwards in all directions, instead of along the x-axis only. Along the
streamwise direction, the behaviour remains very much like that of a one-dimensional
topography, with the notable exception of a second capillary surge downstream of
the step-up topography (see figure 8, y = 0w/Ld: this downstream capillary surge
is higher and decays more slowly than the upstream ridge). On the sides of the
topography, a spanwise perturbation is created that relaxes very slowly in the wake
of the localized topography, as illustrated in figure 12 (left). We believe that this
‘horseshoe’-shaped bow-ridge comes from two combined effects: first the localized
pressure gradient in the upstream ridge drives liquid sideways, away from the adverse
pressure gradient; and secondly, the advective terms bend the liquid downstream,
leading to the horseshoe shape. The cause of the downstream surge is not very clear
to us, although we conjecture that the introduction of the coupled x- and y-derivative
terms due to surface tension in the governing equation, dictates oscillatory modes
along y, so that the two sidearms of the bow-ridge have to be smoothly connected
and form a decaying spanwise wave as seen in figure 12(a). The evolution of the
spanwise profiles downstream of a square shows that lateral thickness variations of a
few percent are still present at a distance of ten times the dynamic capillary length
Ld , much slower than in the one-dimensional case. This behaviour was present in
Hayes’ Green’s function and can be quantitavely described. According to Hayes et al.
(2000), the Green’s function G(x, y) is solution of the equation

∂xG + ∂xxxxG + 2∂xxyyG + ∂yyyyG = δ(x)δ(y). (3.4)
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Far away from the δ-topography, ∂xxyyG and ∂xxxxG are negligible compared to
∂yyyyG. The behaviour of the film is then given by the balance of the two terms:
∂xG = −∂yyyyG. To solve this equation, a Fourier transformation can be performed on
the y variable. After integration on the x variable and inverse Fourier transformation,
it is found that G(x, y) will have a self-similar behaviour according to G(x, y) ∝
x−af (y/xb), with b = 1/4 and a = b + 1 = 5/4; f is a function depending only
on the parameter y/xb. One can expect this power-law behaviour for the thickness
of the film far downstream of a topography. In figure 12(b) we have applied the
scaling y ′ = y/xb, h′ = xah in order to collapse all the experimental curves onto a
single master-curve. The optimal scaling exponents for these curves were found to
be a = 1.1 and b = 0.23 which is of the expected order of magnitude for these
exponents. The difference with the Green’s function scaling exponents is due to the
spatial extent of the topography that induces higher-order terms which interfere in the
scaling. This analysis shows that the perturbations observed after a two-dimensional
localized topography are decreasing following a power-law scaling. The small value of
the exponent a explains why the perturbation remains in the flow over long distances.
Exponent b represents the divergence of the two arms of the tail. Once again the
small value of this exponent shows that the tail will spread slowly in the y-direction.

Due to its ease of use by convolution with elementary topographies and its linearity,
the experimentally validated analytical two-dimensional Green’s function obtained
by Hayes et al. (2000) should contribute to a better insight into numerous practical
coating problems. Also, we believe that the ‘inverse problem’, where the topography
providing a desired film thickness profile is obtained, would be an interesting problem
in the future, as it would provide the coating engineer with topography solutions and
further insight into which topographies minimize problems like the capillary ridge in
one dimension or the horseshoe bow and downstream surge in two dimensions.

4. Conclusions
In the present work, phase-stepped interferometry has been applied for the first

time to the measurement of complete two-dimensional maps of the free-surface shape
of thin liquid films flowing over a topography. The measurement technique allows
us to attain unprecedented height accuracy and lateral resolution for steady-state
film flows. We have applied this technique successfully to the experimental analysis
of the quantitative changes in the film height as the underlying topography goes
from one- to two-dimensional. The results show that two-dimensional effects are
essentially localized at the edges of the topography when its aspect ratio L/w is
above 5. In this case, the shape of the interface in the centre part of the topography
is described well using existing one-dimensional lubrication theory. The case of a
square topography has successfully been compared with a recently published linear
two-dimensional lubrication model. We use square profiles to demonstrate that the
system still behaves linearly in our parameter range. Although dimensionless groups
indicate that the lubrication approximation is not exactly appropriate in our case,
and one should incorporate a curvilinear coordinate system and inertia terms, the
very good agreement obtained with the two-dimensional lubrication model shows that
such effects should be weak. We also show that in contrast with the one-dimensional
case, the effects of a two-dimensional topography will be felt far downstream of the
topography, according to a power-law relaxation.

Future experiments using higher-viscosity liquids could provide a broader valid-
ation of the two-dimensional lubrication theory.
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Finally, we suggest an experimental technique to measure both the thickness distri-
bution of the film and the solute concentration in evaporating films. By combining the
present phase-stepped interferometry with single-arm interferometry as used earlier
by Peurrung & Graves (1991) and Decré et al. (1999), it should be possible to obtain
both the thickness distribution of the film and its local index of refraction. Since
the latter is related to the solute concentration, such combined measurements should
provide two-dimensional measurements of both the thickness and the concentration,
allowing the detailed study of evaporating flows over topography.

We would like to thank our colleagues J. H. Lammers for stimulating discussions,
F. Zijp for invaluable help in developing the phase-stepped interferometer, as well as
P. C. Duineveld and H. van Tongeren for their careful review of the manuscript.
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Allain, C., Ausserré, D. & Rondelez, F. 1985 A new method for contact-angle measurements of
sessile drops. J. Colloid Interface Sci. 107, 5–13.
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